Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.264
Filtrar
1.
Sci Transl Med ; 16(744): eadk3259, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657027

RESUMO

Many pathogens continuously change their protein structure in response to immune-driven selection, resulting in weakened protection even in previously exposed individuals. In addition, for some pathogens, such as dengue virus, poorly targeted immunity is associated with increased risk of severe disease through a mechanism known as antibody-dependent enhancement. However, it remains unclear whether the antigenic distances between an individual's first infection and subsequent exposures dictate disease risk, explaining the observed large-scale differences in dengue hospitalizations across years. Here, we develop a framework that combines detailed antigenic and genetic characterization of viruses with details on hospitalized cases from 21 years of dengue surveillance in Bangkok, Thailand, to identify the role of the antigenic profile of circulating viruses in determining disease risk. We found that the risk of hospitalization depended on both the specific order of infecting serotypes and the antigenic distance between an individual's primary and secondary infections, with risk maximized at intermediate antigenic distances. These findings suggest that immune imprinting helps determine dengue disease risk and provide a pathway to monitor the changing risk profile of populations and to quantifying risk profiles of candidate vaccines.


Assuntos
Antígenos Virais , Vírus da Dengue , Dengue , Humanos , Dengue/imunologia , Dengue/epidemiologia , Dengue/virologia , Vírus da Dengue/imunologia , Antígenos Virais/imunologia , Tailândia/epidemiologia , Fatores de Risco , Hospitalização
2.
J Biomed Sci ; 31(1): 43, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649998

RESUMO

Dengue viruses (DENV) are positive-stranded RNA viruses belonging to the Flaviviridae family. DENV is the causative agent of dengue, the most rapidly spreading viral disease transmitted by mosquitoes. Each year, millions of people contract the virus through bites from infected female mosquitoes of the Aedes species. In the majority of individuals, the infection is asymptomatic, and the immune system successfully manages to control virus replication within a few days. Symptomatic individuals may present with a mild fever (Dengue fever or DF) that may or may not progress to a more critical disease termed Dengue hemorrhagic fever (DHF) or the fatal Dengue shock syndrome (DSS). In the absence of a universally accepted prophylactic vaccine or therapeutic drug, treatment is mostly restricted to supportive measures. Similar to many other viruses that induce acute illness, DENV has developed several ways to modulate host metabolism to create an environment conducive to genome replication and the dissemination of viral progeny. To search for new therapeutic options, understanding the underlying host-virus regulatory system involved in various biological processes of the viral life cycle is essential. This review aims to summarize the complex interaction between DENV and the host cellular machinery, comprising regulatory mechanisms at various molecular levels such as epigenetic modulation of the host genome, transcription of host genes, translation of viral and host mRNAs, post-transcriptional regulation of the host transcriptome, post-translational regulation of viral proteins, and pathways involved in protein degradation.


Assuntos
Vírus da Dengue , Dengue , Vírus da Dengue/fisiologia , Vírus da Dengue/patogenicidade , Vírus da Dengue/genética , Humanos , Dengue/virologia , Animais , Interações Hospedeiro-Patógeno , Replicação Viral
3.
Sci Rep ; 14(1): 9322, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654034

RESUMO

Dengue virus (DENV) infection can lead to severe outcomes through a virus-induced cytokine storm, resulting in vascular leakage and inflammation. An effective treatment strategy should target both virus replication and cytokine storm. This study identified Kaempferia galanga L. (KG) extract as exhibiting anti-DENV activity. The major bioactive compound, ethyl-p-methoxycinnamate (EPMC), significantly reduced DENV-2 infection, virion production, and viral protein synthesis in HepG2 and A549 cells, with half-maximal effective concentration (EC50) values of 22.58 µM and 6.17 µM, and impressive selectivity indexes (SIs) of 32.40 and 173.44, respectively. EPMC demonstrated efficacy against all four DENV serotypes, targeting the replication phase of the virus life cycle. Importantly, EPMC reduced DENV-2-induced cytokines (IL-6 and TNF-α) and chemokines (RANTES and IP-10), as confirmed by immunofluorescence and immunoblot analyses, indicating inhibition of NF-κB activation. EPMC's role in preventing excessive inflammatory responses suggests it as a potential candidate for dengue treatment. Absorption, distribution, metabolism, excretion, and toxicity (ADMET) and drug-likeness for EPMC were predicted using SwissADME and ProTox II servers, showing good drug-like properties without toxicity. These findings highlight KG extract and EPMC as promising candidates for future anti-dengue therapeutics, offering a dual-action approach by inhibiting virus replication and mitigating inflammatory reactions.


Assuntos
Antivirais , Cinamatos , Vírus da Dengue , Dengue , Inflamação , NF-kappa B , Replicação Viral , Humanos , NF-kappa B/metabolismo , Vírus da Dengue/efeitos dos fármacos , Cinamatos/farmacologia , Dengue/tratamento farmacológico , Dengue/virologia , Replicação Viral/efeitos dos fármacos , Antivirais/farmacologia , Células A549 , Inflamação/tratamento farmacológico , Células Hep G2 , Transdução de Sinais/efeitos dos fármacos , Citocinas/metabolismo
8.
mBio ; 14(5): e0093423, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37732809

RESUMO

IMPORTANCE: One of the fundamental features that make viruses intracellular parasites is the necessity to use cellular translational machinery. Hence, this is a crucial checkpoint for controlling infections. Here, we show that dengue and Zika viruses, responsible for nearly 400 million infections every year worldwide, explore such control for optimal replication. Using immunocompetent cells, we demonstrate that arrest of protein translations happens after sensing of dsRNA and that the information required to avoid this blocking is contained in viral 5'-UTR. Our work, therefore, suggests that the non-canonical translation described for these viruses is engaged when the intracellular stress response is activated.


Assuntos
Vírus da Dengue , Estresse Fisiológico , Replicação Viral , Zika virus , eIF-2 Quinase , Animais , Humanos , Células A549 , Chlorocebus aethiops , Dengue/imunologia , Dengue/virologia , Vírus da Dengue/fisiologia , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Deleção de Genes , Biossíntese de Proteínas/genética , Biossíntese de Proteínas/imunologia , Estresse Fisiológico/genética , Estresse Fisiológico/imunologia , Células Vero , Replicação Viral/genética , Replicação Viral/imunologia , Zika virus/fisiologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia , RNA de Cadeia Dupla/metabolismo
9.
Front Public Health ; 11: 1035060, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37522010

RESUMO

Objectives: Dengue has been endemic in Southeast Asian countries for decades. There are few reports tracing the dynamics of dengue in real time. In this study, we generated hundreds of pathogen genomes to understand the genomic epidemiology of an outbreak in a hyper-endemic area of dengue. Methods: We leveraged whole-genome short-read sequencing (PE150) to generate genomes of the dengue virus and investigated the genomic epidemiology of a dengue virus transmission in a mesoscale outbreak in Shantou, China, in 2019. Results: The outbreak was sustained from July to December 2019. The total accumulated number of laboratory-confirmed cases was 944. No gender bias or fatalities were recorded. Cambodia and Singapore were the main sources of imported dengue cases (74.07%, n = 20). A total of 284 dengue virus strains were isolated, including 259 DENV-1, 24 DENV-2, and 1 DENV-3 isolates. We generated the entire genome of 252 DENV isolates (229 DENV-1, 22 DENV-2, and 1 DENV-3), which represented 26.7% of the total cases. Combined epidemiological and phylogenetic analyses indicated multiple independent introductions. The internal transmission evaluations and transmission network reconstruction supported the inference of phylodynamic analysis, with high Bayes factor support in BSSVS analysis. Two expansion founders and transmission chains were detected in CCH and LG of Shantou. Conclusions: We observed the instant effects of genomic epidemiology in monitoring the dynamics of DENV and highlighted its prospects for real-time tracing of outbreaks of other novel agents in the future.


Assuntos
Dengue , Genoma Viral , China/epidemiologia , Dengue/epidemiologia , Dengue/transmissão , Dengue/virologia , Humanos , Vírus da Dengue/genética , Surtos de Doenças , Filogenia , Masculino , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Lactente , Pré-Escolar , Criança , Adolescente , Idoso , Idoso de 80 Anos ou mais
10.
Virology ; 586: 12-22, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37473502

RESUMO

Dengue viruses are human pathogens that are transmitted through mosquitoes. Apart from the typical symptoms associated with viral fevers, DENV infections are known to cause several neurological complications such as meningitis, encephalitis, intracranial haemorrhage, retinopathies along with the more severe, and sometimes fatal, vascular leakage and dengue shock syndrome. This study was designed to investigate, in detail, the predicted viral protein aggregation prone regions among all serotypes. Further, in order to understand the cross-talk between viral protein aggregation and aggregation of cellular proteins, cross-seeding experiments between the DENV NS1 (1-30), corresponding to the ß-roll domain and the diabetes hallmark protein, amylin, were performed. Various techniques such as fluorescence spectroscopy, circular dichroism, atomic force microscopy and immunoblotting have been employed for this. We observe that the DENV proteomes have many predicted APRs and the NS1 (1-30) of DENV1-3, 2K and capsid anchor of DENV2 and DENV4 are capable of forming amyloids, in vitro. Further, the DENV NS1 (1-30), aggregates are also able to cross-seed and enhance amylin aggregation and vice-versa. This knowledge may lead to an opportunity for designing suitable inhibitors of protein aggregation that may be beneficial for viral infections and comorbidities.


Assuntos
Vírus da Dengue , Proteínas Virais , Vírus da Dengue/química , Vírus da Dengue/classificação , Proteoma , Proteínas Virais/química , Proteínas Virais/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Agregados Proteicos , Humanos , Dengue/metabolismo , Dengue/patologia , Dengue/virologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia
11.
Nature ; 615(7953): 678-686, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36922586

RESUMO

Dengue is a major health threat and the number of symptomatic infections caused by the four dengue serotypes is estimated to be 96 million1 with annually around 10,000 deaths2. However, no antiviral drugs are available for the treatment or prophylaxis of dengue. We recently described the interaction between non-structural proteins NS3 and NS4B as a promising target for the development of pan-serotype dengue virus (DENV) inhibitors3. Here we present JNJ-1802-a highly potent DENV inhibitor that blocks the NS3-NS4B interaction within the viral replication complex. JNJ-1802 exerts picomolar to low nanomolar in vitro antiviral activity, a high barrier to resistance and potent in vivo efficacy in mice against infection with any of the four DENV serotypes. Finally, we demonstrate that the small-molecule inhibitor JNJ-1802 is highly effective against viral infection with DENV-1 or DENV-2 in non-human primates. JNJ-1802 has successfully completed a phase I first-in-human clinical study in healthy volunteers and was found to be safe and well tolerated4. These findings support the further clinical development of JNJ-1802, a first-in-class antiviral agent against dengue, which is now progressing in clinical studies for the prevention and treatment of dengue.


Assuntos
Antivirais , Vírus da Dengue , Dengue , Primatas , Proteínas não Estruturais Virais , Animais , Humanos , Camundongos , Antivirais/efeitos adversos , Antivirais/farmacologia , Antivirais/uso terapêutico , Ensaios Clínicos Fase I como Assunto , Dengue/tratamento farmacológico , Dengue/prevenção & controle , Dengue/virologia , Vírus da Dengue/classificação , Vírus da Dengue/efeitos dos fármacos , Relação Dose-Resposta a Droga , Farmacorresistência Viral , Técnicas In Vitro , Terapia de Alvo Molecular , Primatas/virologia , Ligação Proteica/efeitos dos fármacos , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
12.
Acta Trop ; 234: 106584, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35798088

RESUMO

Dengue is classified as an endemic infectious disease, which is transmitted by Aedes mosquitos. Kinetic studies, which monitor the viral load of the disease, have been the mainstay for several decades in humanity's quest to control this disease. Our study aims to systematically evaluate the usage of different timing systems in dengue kinetic studies. A search in nine electronic databases and manual search of reference and citation lists were conducted to find relevant studies. A quality assessment using the National Institute of Health tools for observational cohort and cross-sectional studies was performed. The protocol was registered in PROSPERO with number CRD42018086435. As results, among included 87 studies, 71 studies (81.6%) use a timing system which is based on the day of illness onset, of which, 11 studies designate the day of illness onset as "day 0″ (type 1A) while 60 studies designate it as "day 1″ (type 1B). Only ten articles (11.5%) designate the day of defervescence as "day 0″, the day before and after defervescence as "day -1″ and "day +1″, respectively. Four articles (4.6%) use a timing system based on the day of hospital admission. Lastly, two studies (2.3%) designate the day of hemorrhagic manifestation as "day 0″ and two studies (2.3%) designate the day of pharmacological treatment as "day 1″. Therefore, the timing system which designates the day of illness onset as "day 1″ (type 1B) was most commonly used. Inconsistent definitions of "day 0″ and "day 1″ may lead to disparities in results across the studies and may have a negative impact on treatment guidelines implementation.


Assuntos
Aedes/virologia , Vírus da Dengue/fisiologia , Dengue/transmissão , Mosquitos Vetores/virologia , Animais , Estudos de Coortes , Estudos Transversais , Dengue/classificação , Dengue/epidemiologia , Dengue/virologia , Vírus da Dengue/crescimento & desenvolvimento , Humanos , Cinética
13.
Virology ; 570: 67-80, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35390695

RESUMO

Septins are a family of GTP-binding proteins identified in insects and mammals. Septins are components of the cytoskeleton and participate in cytokinesis, chromosomal segregation, intracellular vesicular traffic, and response to pathogens. Human septin 6 was identified as necessary for hepatitis C virus replication. Information about host factors necessary for flavivirus replication in mosquitoes is scarce. Thus, the role of septins in the replicative cycle of dengue virus in Aedes spp. derived cells was investigated. Through bioinformatic analysis, sequences of septin-like proteins were identified. Infected mosquito cells showed increased expression of Sep2. Colocalization analysis, proximity ligation and immunoprecipitation assays indicated that Sep2 interacts with proteins E, NS3 and NS5, but not NS1. Immunoelectron microscopy evidenced the presence of AalSep2 in replicative complexes. Finally, silencing of Sep2 expression resulted in a significant decrease in virus progeny, indicating that Sep2 is a host factor participating in dengue virus replication in mosquito cells.


Assuntos
Aedes , Dengue , Flavivirus , Replicação Viral , Aedes/virologia , Animais , Dengue/virologia , Flavivirus/metabolismo , Flavivirus/fisiologia , Humanos , Mamíferos , Septinas/genética , Septinas/metabolismo
14.
Cell Rep ; 38(6): 110341, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35139383

RESUMO

The tetravalent dengue vaccine candidate, TAK-003, induces a functional antibody response, but the titers of antibodies against the four serotypes of the dengue virus (DENV) can vary. Here, through a transcriptomic analysis on whole blood collected from recipients of a two-dose schedule of TAK-003, we examine gene expression, splicing, and transcript isoform-level changes for both protein-coding and noncoding genes to broaden our understanding of the immune response. Our analysis reveals a dynamic pattern of vaccine-associated regulation of long noncoding RNAs (lncRNAs), differential splicing of interferon-stimulated gene exons, and gene expression changes related to multiple signaling pathways that detect viral infection. Co-expression networks isolate immune cell-type-related and interferon-response modules that represent specific biological processes that correlate with more robust antibody responses. These data provide insights into the early determinants of the variable immune response to the vaccine, highlighting the significance of splicing and isoform-level gene regulatory mechanisms in defining vaccine immunogenicity.


Assuntos
Anticorpos Antivirais/imunologia , Vacinas contra Dengue/imunologia , Vírus da Dengue/patogenicidade , RNA Longo não Codificante/genética , Transcriptoma/genética , Anticorpos Neutralizantes/imunologia , Dengue/virologia , Vírus da Dengue/genética , Humanos , Imunogenicidade da Vacina/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas Virais/imunologia , Vacinas Virais/farmacologia
15.
PLoS Negl Trop Dis ; 16(2): e0009848, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35143495

RESUMO

Across the Pacific, and including in the Solomon Islands, outbreaks of arboviruses such as dengue, chikungunya, and Zika are increasing in frequency, scale and impact. Outbreaks of mosquito-borne disease have the potential to overwhelm the health systems of small island nations. This study mapped the seroprevalence of dengue, Zika, chikungunya and Ross River viruses in 5 study sites in the Solomon Islands. Serum samples from 1,021 participants were analysed by ELISA. Overall, 56% of participants were flavivirus-seropositive for dengue (28%), Zika (1%) or both flaviviruses (27%); and 53% of participants were alphavirus-seropositive for chikungunya (3%), Ross River virus (31%) or both alphaviruses (18%). Seroprevalence for both flaviviruses and alphaviruses varied by village and age of the participant. The most prevalent arboviruses in the Solomon Islands were dengue and Ross River virus. The high seroprevalence of dengue suggests that herd immunity may be a driver of dengue outbreak dynamics in the Solomon Islands. Despite being undetected prior to this survey, serology results suggest that Ross River virus transmission is endemic. There is a real need to increase the diagnostic capacities for each of the arboviruses to support effective case management and to provide timely information to inform vector control efforts and other outbreak mitigation interventions.


Assuntos
Infecções por Alphavirus/sangue , Febre de Chikungunya/sangue , Vírus Chikungunya/imunologia , Vírus da Dengue/imunologia , Dengue/sangue , Vírus do Rio Ross/imunologia , Infecção por Zika virus/sangue , Zika virus/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Infecções por Alphavirus/epidemiologia , Infecções por Alphavirus/virologia , Anticorpos Antivirais/sangue , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/virologia , Vírus Chikungunya/genética , Vírus Chikungunya/isolamento & purificação , Criança , Pré-Escolar , Dengue/epidemiologia , Dengue/virologia , Vírus da Dengue/genética , Vírus da Dengue/isolamento & purificação , Feminino , Humanos , Masculino , Melanesia/epidemiologia , Pessoa de Meia-Idade , Vírus do Rio Ross/genética , Vírus do Rio Ross/isolamento & purificação , Estudos Soroepidemiológicos , Adulto Jovem , Zika virus/genética , Zika virus/isolamento & purificação , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/virologia
16.
PLoS One ; 17(2): e0260868, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35143507

RESUMO

The purpose of this study is to examine the awareness and perception of malaria and dengue fever in Multan Punjab, Pakistan while taking into account the important role of government policies and other variables. The goal of this study is to examine the awareness of students in Multan, Pakistan on malaria and dengue. This study is based on a quantitative approach of secondary evidence from scientific journals and questionnaire surveys. It is also based on observational evidence gathered in Multan Punjab Pakistan, in a field study. The survey with school children, teachers and healthcare professionals were both formal and semi-structuralize. Studies have found that malaria and dengue mainly affect children's schooling through their absence, but can also induce brain loss and cognitive disability. In questionnaires, students were seen to have different understanding of the illness, but also to be able to serve as agents of health reform only through teachers. A sample size of 500 respondents has been selected from different colleges of district Multan Punjab, Pakistan. Correlation technique is used for the data analysis. According to our results it is concluded that the students at college level are aware of malaria and dengue diseases, but they are not capable of engaging and serving as agents for health reform. On the basis of results it is recommended that students must teach about epidemics diseases regarding how to handle these diseases.


Assuntos
Conscientização , Dengue/patologia , Malária/patologia , Percepção , Estudantes/psicologia , Adolescente , Adulto , Dengue/epidemiologia , Dengue/virologia , Feminino , Humanos , Malária/epidemiologia , Malária/parasitologia , Masculino , Paquistão/epidemiologia , Instituições Acadêmicas , Inquéritos e Questionários , Universidades , Adulto Jovem
17.
Front Immunol ; 13: 810376, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185902

RESUMO

Exacerbated inflammatory response and altered vascular function are hallmarks of dengue disease. Reactive oxygen species (ROS) production has been associated to endothelial barrier disturbance and microvascular alteration in distinct pathological conditions. Increased ROS has been reported in in vitro models of dengue virus (DENV) infection, but its impact for endothelial cell physiology had not been fully investigated. Our group had previously demonstrated that infection of human brain microvascular endothelial cells (HBMEC) with DENV results in the activation of RNA sensors and production of proinflammatory cytokines, which culminate in cell death and endothelial permeability. Here, we evaluated the role of mitochondrial function and NADPH oxidase (NOX) activation for ROS generation in HBMEC infected by DENV and investigated whether altered cellular physiology could be a consequence of virus-induced oxidative stress. DENV-infected HBMECs showed a decrease in the maximal respiratory capacity and altered membrane potential, indicating functional mitochondrial alteration, what might be related to mtROS production. Indeed, mtROS was detected at later time points after infection. Specific inhibition of mtROS diminished virus replication, cell death, and endothelial permeability, but did not affect cytokine production. On the other hand, inhibition of NOX-associated ROS production decreased virus replication and cell death, as well as the secretion of inflammatory cytokines, including IL-6, IL-8, and CCL5. These results demonstrated that DENV replication in endothelial cells induces ROS production by different pathways, which impacts biological functions that might be relevant for dengue pathogenesis. Those data also indicate oxidative stress events as relevant therapeutical targets to avoid vascular permeability, inflammation, and neuroinvasion during DENV infection.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Endotélio Vascular/virologia , Espécies Reativas de Oxigênio/metabolismo , Replicação Viral/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Citocinas/metabolismo , Dengue/imunologia , Dengue/virologia , Vírus da Dengue/genética , Endotélio Vascular/efeitos dos fármacos , Humanos , Estresse Oxidativo/efeitos dos fármacos
18.
Viruses ; 14(2)2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35215813

RESUMO

The transmission of dengue and other medically important mosquito-borne viruses in the westernmost region of Indonesia is not well described. We assessed dengue and Zika virus seroprevalence in Aceh province, the westernmost area of the Indonesian archipelago. Serum samples collected from 199 randomly sampled healthy residents of Aceh Jaya in 2017 were analyzed for neutralizing antibodies by plaque reduction neutralization test (PRNT). Almost all study participants (198/199; 99.5%) presented with multitypic profiles of neutralizing antibodies to two or more DENV serotypes, indicating transmission of multiple DENV in the region prior to 2017. All residents were exposed to one or more DENV serotypes by the age of 30 years. The highest geometric mean titers were measured for DENV-4, followed by DENV-1, DENV-2 and DENV-3. Among a subset of 116 sera, 27 neutralized ZIKV with a high stringency (20 with PRNT90 > 10 and 7 with PRNT90 > 40). This study showed that DENV is hyperendemic in the westernmost region of the Indonesian archipelago and suggested that ZIKV may have circulated prior to 2017.


Assuntos
Anticorpos Antivirais/sangue , Vírus da Dengue/imunologia , Dengue/sangue , Infecção por Zika virus/sangue , Zika virus/imunologia , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Dengue/epidemiologia , Dengue/virologia , Vírus da Dengue/classificação , Vírus da Dengue/genética , Vírus da Dengue/isolamento & purificação , Feminino , Humanos , Indonésia/epidemiologia , Masculino , Pessoa de Meia-Idade , Testes de Neutralização , Estudos Soroepidemiológicos , Adulto Jovem , Zika virus/classificação , Zika virus/genética , Zika virus/isolamento & purificação , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/virologia
19.
Molecules ; 27(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163918

RESUMO

The spread of the Dengue virus over the world, as well as multiple outbreaks of different serotypes, has resulted in a large number of deaths and a medical emergency, as no viable medications to treat Dengue virus patients have yet been found. In this paper, we provide an in silico virtual screening and molecular dynamics-based analysis to uncover efficient Dengue infection inhibitors. Based on a Google search and literature mining, a large phytochemical library was generated and employed as ligand molecules. In this investigation, the protein target NS2B/NS3 from Dengue was employed, and around 27 compounds were evaluated in a docking study. Phellodendroside (-63 kcal/mole), quercimeritrin (-59.5 kcal/mole), and quercetin-7-O-rutinoside (-54.1 kcal/mole) were chosen based on their binding free energy in MM-GBSA. The tested compounds generated numerous interactions at Lys74, Asn152, and Gln167 residues in the active regions of NS2B/NS3, which is needed for the protein's inhibition. As a result, the stable mode of docked complexes is defined by various descriptors from molecular dynamics simulations, such as RMSD, SASA, Rg, RMSF, and hydrogen bond. The pharmacological properties of the compounds were also investigated, and no toxicity was found in computational ADMET properties calculations. As a result, this computational analysis may aid fellow researchers in developing innovative Dengue virus inhibitors.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Dengue/tratamento farmacológico , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Compostos Fitoquímicos/farmacologia , Inibidores de Proteases/farmacologia , Dengue/patologia , Dengue/virologia , Ensaios de Triagem em Larga Escala , Humanos , Serina Endopeptidases/química , Proteínas não Estruturais Virais/antagonistas & inibidores
20.
J Virol ; 96(5): e0166421, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-34986002

RESUMO

The dengue virus NS1 is a multifunctional protein that forms part of replication complexes. NS1 is also secreted, as a hexamer, to the extracellular milieu. Circulating NS1 has been associated with dengue pathogenesis by several mechanisms. Cell binding and internalization of soluble NS1 result in endothelial hyperpermeability and in the downregulation of the innate immune response. In this work, we report that the HDL scavenger receptor B1 (SRB1) in human hepatic cells and a scavenger receptor B1-like in mosquito C6/36 cells act as cell surface binding receptors for dengue virus NS1. The presence of the SRB1 on the plasma membrane of C6/36 cells, as well as in Huh7 cells, was demonstrated by confocal microscopy. The internalization of NS1 can be efficiently blocked by anti-SRB1 antibodies, and previous incubation of the cells with HDL significantly reduces NS1 internalization. Significant reduction in NS1 internalization was observed in C6/36 cells transfected with siRNAs specific for SRB1. In addition, the transient expression of SRB1 in Vero cells, which lacks the receptor, allows NS1 internalization in these cells. Direct interaction between soluble NS1 and the SRB1 in Huh7 and C6/36 cells was demonstrated in situ by proximity ligation assays and in vitro by surface plasmon resonance. Finally, results are presented indicating that the SRB1 also acts as a cell receptor for Zika virus NS1. These results demonstrate that dengue virus NS1, a bona fide lipoprotein, usurps the HDL receptor for cell entry and offers explanations for the altered serum lipoprotein homeostasis observed in dengue patients. IMPORTANCE Dengue is the most common viral disease transmitted to humans by mosquitoes. The dengue virus NS1 is a multifunctional glycoprotein necessary for viral replication. NS1 is also secreted as a hexameric lipoprotein and circulates in high concentrations in the sera of patients. Circulating NS1 has been associated with dengue pathogenesis by several mechanisms, including favoring of virus replication in hepatocytes and dendritic cells and disruption of the endothelial glycocalyx leading to hyperpermeability. Those last actions require NS1 internalization. Here, we identify the scavenger cell receptor B1, as the cell-binding receptor for dengue and Zika virus NS1, in cultured liver and in mosquito cells. The results indicate that flavivirus NS1, a bona fide lipoprotein, usurps the human HDL receptor and may offer explanations for the alterations in serum lipoprotein homeostasis observed in dengue patients.


Assuntos
Vírus da Dengue , Receptores Depuradores , Proteínas não Estruturais Virais , Infecção por Zika virus , Zika virus , Animais , Linhagem Celular , Chlorocebus aethiops , Culicidae/virologia , Dengue/virologia , Vírus da Dengue/metabolismo , Humanos , Lipoproteínas HDL , Receptores de Lipoproteínas , Receptores Depuradores/metabolismo , Células Vero , Proteínas não Estruturais Virais/imunologia , Internalização do Vírus , Zika virus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...